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Abstract

Minerals have recently emerged as promising detec-
tion media for rare event searches in experimental parti-
cle physics. Nuclear recoils from particle interactions can
leave micrometer-scale defect tracks in crystalline mate-
rials. However, identifying these interaction event signa-
tures requires imaging large volumes of mineral at high
resolution and accurately segmenting signal. Current seg-
mentation techniques rely on expert annotation or transfer
learning. These approaches are either unscalable or poorly
matched to this domain.

To address this, we propose a self-supervised learning
framework for pretraining a transformer encoder on irra-
diated Lithium Fluoride (LiF) samples imaged with light
sheet fluorescence microscopy (LSFM) from the PALEOC-
CENE collaboration [1]. Using a masked autoencoding
strategy, our goal is to learn robust representations that
support future finetuning for semantic segmentation or ob-
Jject detection. Initial results show that while the model
effectively reconstructs periodic background patterns, it
struggles to recover true signal at masking ratios above
20%, likely due to the signal’s spatial sparsity and strong
local structure. These findings suggest that more targeted
masking or patch selection strategies may be necessary for
the model to capture features relevant to rare event signa-
tures.

1. Introduction

This project addresses the challenge of learning mean-
ingful representations of nuclear recoil-induced defects
in LiF crystals imaged using light-sheet fluorescence mi-
croscopy (LSFM). Nuclear recoils occur when energetic
particles collide with atoms in a solid, displacing them from
their lattice positions. These vacancies in the lattice struc-
ture can be visualized using LSFM by selectively illuminat-

ing and imaging thin optical slices of the sample. Accurate
identification of these defects is essential for solid-state de-
tectors used in rare event searches (physics experiments that
aim to detect very weakly interacting particles like neutri-
nos and hypothesized dark matter).

Rare event search experiments require scanning a lot of
material because the expected signals are very sparse. The
current state of research and development for minerals like
LiF as a detection medium is very small-scale. Scans are
collected and human scientists inspect and label defects. A
previous attempt [ 1] to use machine learning for defect seg-
mentation relies on a pretrained model trained using bio-
logical microscopy data. This model makes mistakes of-
ten enough that scientists still inspect and correct its out-
put. Having a human expert hand-label data, as is currently
done, is not a scalable approach and thus creates the need
for a domain-specific segmentation model.

Given raw 3D fluorescence microscopy data of irradiated
LiF crystals, our goal is to learn rich feature representations
of localized defect structures using self-supervised learn-
ing. These learned representations can later support down-
stream tasks such as identifying which regions of the image
contain nuclear recoil-induced tracks and distinguishing be-
tween tracks caused by different types of particles, such as
alpha particles or neutrons.

Our raw data consists of 3D image volumes, which are
stacks of 2D optical slices that form a volumetric represen-
tation of the crystal. For the purposes of visualization we
present summed 2D projections of these volumes through-
out the paper, but our entire pipeline operates on 3D data.

We begin by denoising the raw 3D data and extract-
ing crops, algorithmically ensuring that each crop con-
tains sufficient signal. We then tokenize each crop using a
lightweight convolutional layer and incorporate spatial con-
text through a learnable positional encoding network. These
embedded tokens are then passed through a transformer-
based encoder and decoder trained with masked autoencod-



ing. Finally, a reconstruction head projects the decoded to-
kens back into 3D image space, where we compute a loss
with respect to the ground truth image. This pipeline al-
lows the model to learn spatial correlations between tokens
in order to perform accurate reconstruction.

2. Related Work
2.1. Physics Research

To motivate our project, we reference a whitepaper [2]
that describes the concepts and early research and develop-
ment efforts into using minerals as detectors in rare event
searches. This approach is particularly promising because
naturally occurring crystals can persist for billions of years.
This increases the likelihood that they have recorded rare
interactions, such as those caused by neutrinos and hypoth-
esized dark matter particles, in their defect structures. Be-
cause the signals of interest are so rare, rare event detection
would require scanning a huge amount of mineral volumes.
Baum et al. [2] strongly articulate the need for automated
methods to identify signals or regions of interest in this data.

We used this perspective to inform our analysis and un-
derstanding of Araujo et al. [1], of the PALEOCCENE Col-
laboration, who collect the microscopy data we use in this
project and implement the code we use to interface with
it. They also introduce a preliminary analysis framework to
segment regions of signal.

While the use of LSFM to scan large crystal volumes is
not novel, this paper pioneered its use as a candidate method
for the high-throughput, variable resolution scanning that
a mineral-based rare event search would require. A major
strength of this paper is the successful demonstration of this
imaging method.

However, a weakness is that the code supporting their
preliminary signal segmentation method is not sufficiently
robust or accurate for compatibility with production-scale
scanning. They rely on an out-of-the-box, “no code so-
lution” segmentation tool called Ilastik, which was pre-
trained using biological microscopy data. This tool accepts
a small number of 2D hand-labeled slices and presumably
uses transfer learning to finetune itself. The results are inac-
curate enough that experts still review and correct its output
before the segmented images are passed through the rest of
the analysis pipeline. In other words, accurate signal seg-
mentation is a largely unsolved problem in this domain.

2.2. Model Architecture Research

Given our lack of labeled data, we believe the best ap-
proach to creating a robust signal segmentation model is to
separately pretrain an encoder and then finetune a segmen-
tation head. This would allow us to pretrain the encoder
using a self-supervised learning method, hopefully allow-
ing it to develop a useful representations of our data without

requiring extensive labels.

Two candidate architectures we consider are explored by
Young et al. [17], who present a strong example of learning
structural information about particle tracks with a masked
autoencoder (MAE), and by Dominé et al. [7], who achieve
the same task with a supervised CNN. The data used by both
of these references comes from simulations of a different
type of particle detector and consists of sparse pointclouds.
While this is inherently different from our dense, noisy, and
voxelized 3D images, they search for signals with the same
geometry as us: line-like structures which extend for some
characteristic length.

Young et al. [17] introduced a transformer-based MAE
which approached the performance of supervised methods
at semantic segmentation of this pointcloud data.

The algorithm in this work involves first tokenizing the
particle trajectories, chiefly through a method known as vol-
umetric point cloud grouping. The rationale for this method
lies in its ability to bypass many of the traditional prob-
lems associated with KNN methods. These points are then
grouped into patches, normalized, encoded into a single la-
tent vector, and then run through an encoder with positional
embeddings. However, this model struggles to separate un-
correlated events within small spatial regions.

The strength of Dominé et al. [7] lies in solving the prob-
lem of using sparse data in networks traditionally designed
for dense visual data. This paper shows that a CNN could
learn features of our sparsely distributed signal. While this
paper relies on supervised learning, it was intriguing to see
them use GPU and wall time as two evaluation metrics, par-
ticularly considering that those could apply in our model.

Lastly, considering that most state-of-the-art approaches
in computer vision make use of transformers, we reference
Lietal. [10] for an understanding of the current transformer
landscape and a sense of how transformers compare to other
methods like CNNs. A crucial insight from this paper was
that transformer approaches are both simpler and more ac-
curate, particularly when given enough data.

Other papers used to inform the approach from an ar-
chitecture perspective included Marks et al. on alternative
self-supervision methods, [11], Shah et al. on U-nets
for electron microscopy images [16], Dionelis et al. for
alternate error methods [60], Chitta et al. on exploring the
idea of proxy labels, [5], and Mehta et al. [12] as a way to
further narrow down our choice of segmentation method.
We also referenced the Caron et al., or the DINO paper[4]
to inform our self-attention maps.



3. Dataset and Features
3.1. Data Preprocessing

Preprocessing aims to retain enough signal for the model
to learn meaningful structure. To achieve this, we improve
the signal-to-noise ratio.

Each scan of the LiF is slightly different in terms of light-
ing, shape, and z-resolution. We standardize our data by
normalizing intensity values within each scan and down-
sampling all scans to match the lowest resolution. It is no-
table that fluorescence intensity in LSFM is measured in
photon counts.

The approach used by the PALEOCCENE Collabora-
tion [1] involves selecting the crystal regions in each scan
which were illuminated by the imaging tool and applying a
gaussian blur. To replicate this, the off the shelf packages
we used include Torch [13], NumPy [&], Pandas [15], and
Scikit-Learn [14].

Our data consists of per-voxel intensity values, and re-
gions of high intensity correspond to regions of high signal.
Semantically, we look for regions of high intensity which
have a geometry characteristic of particle tracks (elongated
line-like structures).

The data consists of 3D volumetric scans of LiF samples.
As a first preprocessing step, we removed regions of the raw
scans that were not illuminated during imaging. Because of
the light-sheet fluorescence microscopy setup, this cut was
applied strictly along the y-axis. The dimensions of the non-
luminous scan regions were recorded in a spreadsheet by the
original data collectors [ 1], which we referenced in order to
accurately crop the scan.

While the resolution of our data varies slightly across
scans, they all have an approximate resolution of 3000 vox-
els (0.425 micrometers per voxel) along the X and Y axes.
The resolution in Z is much coarser, around 30 voxels (7 mi-
crometers per voxel). The result is that our 3D volumetric
image has anisotropic voxel dimensions. The primary vari-
ation across scans in our dataset was the Z-axis resolution,
which ranged from 5 to 10 micrometers. To standardize the
Z-dimension, we downsampled the higher-resolution scans
accordingly.

Next, 15 micrometers (around 60 voxels) from each edge
of the scan along the X and Z axes was removed due to
physical limitations of the microscopy beam. To exclude
regions of the largest light sheet spread, data sections closer
to the center are utilized. This is consistent with how the
original authors in [ 1] prepared the scans for segmentation.
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Figure 1: One of the full scans after cuts but before intensity
normalization.

Once we apply these cuts to our data, we apply Gaussian
blurring with a voxel-wise isotropic standard deviation of
2. We select the blur standard deviation through qualitative
inspection of the results.

To increase the effective size of our dataset, we parti-
tion each volumetric scan into smaller sub-volumes, treat-
ing each as an independent data point. This is justified
by the assumption that particle tracks are spatially uncorre-
lated, given the stochastic nature of the nuclear recoil events
that produce them. While they are certainly temporally
correlated, the resulting defect patterns are spatially unpre-
dictable, as decay and scattering processes can occur at ar-
bitrary locations within the crystal. Furthermore, for the
purpose of a rare event search, we only care about whether
we have recorded an event, not when it happened.

Our initial scans had total dimensions on the order of
thousands of micrometers in X and Y, and hundreds of mi-
crometers in Z. Defect tracks tend to be on the order of <50
micrometers long. We choose a kernel size of 5 x 250 x
250 voxels when extracting smaller data points from our
full scans. This gives us around 5000 samples. While this
step augments the size of our dataset, we apply no augmen-
tations to the data itself (flips, rotations, etc.).

Then, the samples are normalized globally to ensure that
discrepancies in lighting across different scans do not affect
our model’s ability to learn. This is particularly important
because our model looks at intensity differences, and skip-
ping this step would lead to different intensity scalings per
data point.

Our nontrivial next step was selecting which 5 x 250 x
250 voxel samples to include in our final dataset. Because
our data is very noisy, we want to avoid including samples
that are exclusively noise. We utilize a method implemented
by the PALEOCCENE group [!] which uses Scipy library



methods to identify boundaries and label the size of candi-
date signal regions. A major limitation of this method is
that it is not compatible with our 3D data, meaning we must
instead apply candidate signal region finding on summed
2D projections. By inspection, we observe that this method
fails often. We choose to only include samples that have at
least 2 candidate signal regions, ending up with a training
set of 2,125 samples, a validation set of 250 samples, and a
test set of 125.

Patch 19 (6 accepted regions) Patch 178 (3 accepted regions)

Patch 24 (9 accepted regions) Patch 298 (3 accepted regions)

Figure 2: Examples of performance by the out of the box
segmentation method. We see examples of where the seg-
mentation method clearly got bright tracks, but also where
it missed tracks visible to the human eye.

3.2. Model Architecture and Hyperparameters

Motivated by the lack of extensive labeled data in this
domain, our goal is to pretrain an encoder that learns mean-
ingful representations of our data in a self-supervised way.
We do this in anticipation of future finetuning for semantic
segmentation or object detection with very minimal labeled
datasets. We choose to use a masked autoencoder (MAE)
strategy to pretrain a transformer encoder.

For our input, one data point consists of a volumetric
image of 5x250x250 voxels. We tokenize this input into
non-overlapping 5x10x10 voxel patches.

We begin by applying a 3D convolutional layer to each
input token to produce a 384-dimensional feature em-
bedding that captures local intensity patterns. In paral-
lel, we generate learnable positional embeddings using a
lightweight two-layer multilayer perceptron (MLP). These
embeddings are also of dimension 384. Incorporating po-

sitional information is essential for enabling the model to
learn about spatial correlations.

Positional embeddings and patch embeddings are
element-wise added and used as the inputs to our trans-
former encoder.

The transformer encoder includes six self-attention lay-
ers with four attention heads, operating on 384-dimensional
embedding vectors. Multi-headed attention was chosen to
help improve our model’s ability to learn complex features.
We also include a linear layer after each multi-headed atten-
tion layer to combine attention outputs from each head into
a single latent vector per token.

After encoding, we introduce a learnable mask token for
each token that was originally masked. These learnable to-
kens are introduced after the encoder stage due to a criti-
cal insight from the original MAE paper [9]. They demon-
strate that early inclusion of learnable mask tokens disrupts
the disrupts the learning of informative latent representa-
tions. Deferring mask token introduction until decoding en-
sures that the encoder - the backbone we anticipate using for
downstream tasks - processes only real, uncorrupted image
data, therefore preserving the quality of learned features.

Then, we use the same positional encoding model on
the 384-dimensional learnable tokens and the latent vectors.
Both the learnable tokens and the latent vectors, now con-
taining positional embeddings, are fed into the decoder. Our
transformer decoder has two self-attention layers and four
heads with an output dimension of 1024. Since we imple-
ment a pretraining strategy, we use a lightweight decoder
compared to our encoder in order to ensure the encoder is
forced to learn the best possible representations.

Lastly, we send the decoder outputs through a recon-
struction head in order to transform them back into the 3D
image space (a 5x10x10 voxel token), where a MSE loss
between ground truth and reconstructed masked data is cal-
culated.

We selected the learning rate, token size, and masking
ratio hyperparameters using a cross-validation strategy. We
trained our model architecture for 200 epochs, and selected
the learning rate and token size which yielded the lowest test
loss. Our final learning rate scheme was a cosine annealing
decay schedule with five epochs of linear warm-up, peaking
at le-4.

We selected the masking ratio by qualitatively inspect-
ing the reconstructions of our data and choosing a ratio that
gives rise to a non-trivial learning task yet does not mask
out entire neighborhoods of our patches.

The spatial correlations of signal in our data are hyper-
local, where different geometric regions of the same particle
track are correlated, but regions corresponding to different
particle tracks are not. This suggests that a conventional
masking ratio of 60% is too strong. We select a masking
ratio of 20% as our final value after testing 20%, 40%, and
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Figure 3: Our model architecture.

60%.

To evaluate our choices for embedding dimension, we
attempted to overfit our model on a set of 256 images with
a masking ratio of 0%. By testing its capacity as a sim-
ple autoencoder, we assessed whether we were introducing
unwanted bottlenecks. We found that an embedding dimen-
sion of 128 did not give our model the capacity to recon-
struct even unmasked inputs. Our final dimension choice of
384 does provide our model with the capacity to represent
our data. This experiment is discussed more in Section 5.

Final training was conducted using the Adam optimizer
for 400 epochs.

4. Evaluation

We are interested in self-supervised learning methods for
this project due to the highly specialized and label-scarce
nature of our data. In future physics experiments searching
for rare signals, large volumes of data must be collected.
Hand-labeling by experts is not a scalable signal identifi-
cation strategy. Manual labeling is time-consuming, error-
prone, and inefficient, particularly for our application where
the data is inherently noisy and signal appearances are in-
consistent. Even domain experts may struggle to provide
accurate annotations, motivating the need for approaches
that can learn meaningful representations without reliance
on extensive labeled datasets.

To achieve a final goal of semantic segmentation, it is
necessary to pretrain a backbone with self-supervised learn-
ing before finetuning on a very minimal labeled dataset. In
this project, we explore pretraining the backbone to learn
the general structure of our data.

We choose masked autoencoding as our self-supervised
learning framework. This is motivated by the structure of

our data: while the background signal exhibits spatially
periodic and relatively smooth behavior, true signal fea-
tures, like particle tracks, manifest as sharply peaked, local-
ized structures. This spatial disparity suggests that a model
trained to reconstruct masked regions of the data can learn
to attend to the high-resolution, hyperlocal correlations in-
dicative of true signal while modeling broader background
regularities.

The pretext task used in masked autoencoding is 3D re-
construction of our original 3D image.

Mathematically, the masked autoencoding algorithm
works as follows:

Let x € R%Y"X be a 3D volumetric data sample. We
tokenize it into non-overlapping patches, yielding a set of
N tokens {x;}¥ ,. Bach token corresponds to a local 3D
region.

We randomly mask a subset M C {1,..., N} of these
tokens. Let  be a corrupted version of z (e.g., with masked
tokens replaced by learnable embeddings).

Let fp denote our masked autoencoder model, parame-
terized by 6.

We learn fj : R%YX — R%Y:X where we decode each
token back into 3D image space after embedding it into a
latent space.

The reconstruction loss is defined over the masked to-
kens only. Given that y; denotes the ground truth token at
locationi C M, and §; = fy(Z); is the reconstructed token,
we optimize the following mean-squared error:

1
™ > IIz)Z-—yZ-H%] (1)

ieM

mein E.p

Notably, we did not choose to use contrastive learning,
despite it being a common self-supervised learning strategy.



Contrastive learning involves creating two views of the
same data sample, and minimizing the contrastive loss over
positive pairs:

exp(sim(z;, 2;)/7)

L; =—log -
S W (k4 exp(sim(zi, 21.) /7)

2)

where sim(u, v) = WTHU’UH (cosine similarity), and 7 is a
temperature hyperparameter. The contrasting learning ob-
jective is to cluster semantically similar data points in the
embedding space, essentially collapsing all variations of a
concept into one representation. This is why class embed-
dings in contrastive learning models often appear as blurry
averages of many views [3]. However, this is explicitly not
what we want. Because our signals are highly localized,
we want to teach our model to remain sensitive to localized
features in our data.

This is why we chose to do masked autoencoding, since
masking part of the data and asking the model to reconstruct
it would ensure that our calculated loss was not misaligned
with our objective of being sensitive to highly localized spa-
tial correlations.

A main qualitative metric we used to evaluate our model
were self attention maps, where the outputs of the attention
layer were visually graphed. For each attention layer in the
model, each head computes how relevant each patch is to
every other patch, and these values are then fed through a
softmax function. What we get out is a 625 x 625 matrix
per head representing how highly correlated each pixel was
with every other pixel. We use this method in order to vi-
sually identify where the model is looking for information,
and how it values certain regions of the data.

5. Experiments/Results/Discussion

Initially, we trained our model for 150 epochs with an
embedding dimension of 128, a token size of 5x25x25 vox-
els, and a masking ratio of 60%. However, with a masking
ratio this high, we observed that our model learned to re-
construct the mean intensity of each token, rather than dis-
tinctive features within the token.
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Figure 4: Initial model converges to token mean. Note in-
tensity color bar scales on ground truth vs. reconstructed
token.

This initial result led us to revisit our hyperparameter
choices. To test model capacity, we trained it as a simple au-
toencoder (no masking) on a small set of 256 images. With
an embedding dimension of 128, the model failed to recon-
struct the data. However, after increasing to 384, the model
was able to accurately reconstruct the overfitting dataset.

We trained the simple autoencoder with an embedding
dimension of 384 for 150 epochs using our existing opti-
mizer and learning rate schedule. This was sufficient to re-
construct the periodic background noise. In regions with
sharp signal peaks, the model also produced peaked inten-
sities, though training was not long enough to overfit these
highly localized features.

Ground Truth
Projection Intensity Reconstruction

10
%0 2
2
5
10
0
-5

(a) Periodic background with relatively narrow intensity range is
reconstructed well.
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(b) We did not completely overfit to regions of intense signal.

Figure 5: Results of overfitting a small autoencoder to a
small training set.

Once we established that our model had sufficient capac-
ity, we began to reintroduce masking. An additional change
we introduced at this stage was a smaller token size of
5x10x10 voxels, aligned better with the characteristic spa-
tial period of our background. This caused us to reduce our
batch size from 256 to 64 due to GPU memory constraints.

We trained our model for 200 epochs with a masking
ratio of 60% as used by [17].
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Figure 6: Validation token reconstruction after training with
60% masking ratio for 200 epochs.

However, we realized that a masking ratio of 60% was
too high for our data, since the spatial correlations of signals
are highly localized. Masking whole signal regions does
not enable the model to learn about their structure, because
there is simply not sufficient relevant information contained
in other areas of the sample.

As a result of this, we dropped our masking ratio to 20%
and retrained our model for 200 epochs. Figure 7 depicts a
reasonable reconstruction of a masked token from the val-
idation dataset by this model. The model was able to ac-
curately predict both the relative intensity ranges and their
approximate positions in the path.
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Figure 7: Token reconstruction on a test sample after train-
ing for 200 epochs with masking ratio of 20%.

From plotting training and validation loss curves, we find
that that our model is not overfitting since we observe no
differing asymptotic behavior.

Given that we observe no overfitting, we continue train-
ing our model to 330 epochs in order to extract better per-
formance.
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(a) When visualized for a whole image, we see the model contin-
ues to do well in predicting local structure.
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(b) We do not observe overfitting in our train and validation loss
curves.

Figure 8: Results from training for 330 epochs with a mask-
ing ratio of 20%.

This is our best-performing model. It is trained for 330
epochs using a masking ratio of 20%, cosine annealing
learning rate scheduler with five epochs of linear warm up
peaking at le-4, and embedding dimension of 384.

This model has reasonable performance at patch recon-
struction, especially in regions consisting of background.
However, considering that our masking ratio is only 20%,
we suspect that our model has just learned to copy and inter-
polate the existing data instead of actually learning complex
features / spatial correlations. To test this hypothesis, we
trained from scratch for 400 epochs with a stratified sam-
pling strategy and a masking ratio of 40%. We then visual-
ized self-attention maps from our transformer encoder.

We implement stratified sampling by masking 10 patches
out of non-overlapping 5x5 voxel (25 square-voxel) regions.
We choose this approach in order to avoid masking entire
local neighborhoods when we increase the masking ratio.
However, we observe that this model performs significantly
worse at the reconstruction task than our model with 20%
random masking.
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(b) Training with random 20% masking (yellow) vs. stratified 40%
masking (blue). The blue curve is taking longer to converge.

Figure 9: Results from training for 400 epochs with strati-
fied sampling and masking ratio of 40%.

Then, we consulted self attention visualizations in order
to check whether or not there were actual regions to which
our model was attending. These visualizations are represen-
tations of the importance between pairs of tokens.
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Figure 10: The visualization of self attention output from
the first head, for the first transformer layer.

As we see in this figure, it turns out that our model is not
learning the complex features, since we only see noise and
not specific emphasis on certain regions. As such, while
we conclude that our model is accurately able to represent
and predict unseen data, we know that these abilities come
from interpolation and not specifically learning the features
themselves.

6. Conclusion/Future Work

Using masked autoencoding as a pretraining strategy, we
attempt to train a transformer encoder to learn structure in
3D volumetric fluorescence scans. Training an encoder in
a self-supervised way is a key step towards enabling down-
stream tasks like semantic segmentation in the domain of
light-sheet fluorescence microscopy of crystals, which lacks
extensive labeled data.

We find that our masked autoencoder is able to learn the
structure of periodic noise within our data reasonably well,
but struggles to accurately reconstruct bright signals. When
we dropped our masking ratio to 0%, the resulting simple
autoencoder was the most high-performing. Increasing the
masking ratio led to overall worse performance, because the
model can no longer just learn to "copy’ input data. While
this is expected, making the learning task more challeng-
ing is essential to learning representations that are actually
useful for downstream tasks.

The weakest component of our current pipeline is the
patch selection strategy. The candidate region-of-interest
(RO]) finder we use, which is based on basic SciPy heuris-
tics, is highly inaccurate, resulting in the inclusion of input
samples that are predominantly background noise. Even
with a hypothetically perfect ROI detector, our current
method lacks a mechanism for systematically sampling to-
kens along the full spatial extent of a signal. As a result, sig-
nal patches contain not just the track itself but also a large
amount of surrounding noise. This imbalance causes the
model to see orders of magnitude more data from the struc-
tured, periodic background than from the rare, localized sig-
nal events we actually aim to model. Consequently, the
learned representations are biased toward the background,
limiting the model’s ability to effectively capture the struc-
ture of nuclear recoil-induced defects.

There are two follow-up steps we would suggest for this
project. First, we would like to develop a more nuanced to-
kenization selection strategy that at least partially addresses
the issue discussed above. Second, there are existing Self-
Distillation with No Labels (DINO) models for feature rep-
resentation of 3D medical microscopy data. It would be
interesting to put our data through these models, visualize
the self-attention maps, and compare them to those from our
MAE.
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back up many of the design decisions.

Data preprocessing: An even split. Piper worked more
on the processing pipeline due to her experience with data,
and Carolyn worked more on implementing the physics-
specific decisions and functions.

Model creation: While both group members were
present and contributing to the model design and creation,
Carolyn took the lead on coding, again due to her prior fa-
miliarity with the material.

Paper/poster creation: Conversely, due to her infamiliar-
ity with the material, Piper took the lead on writing and
formatting the paper.
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